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TECHNICAL PUBLICATION

PERFORMANCE TESTING OF A PROTOTYPIC ANNULAR LINEAR  
INDUCTION PUMP FOR FISSION SURFACE POWER 

1.  INTRODUCTION

 Fission surface power (FSP) systems could be used to provide power on the surface of the 
Moon, Mars, or other planets and moons of our solar system. Fission power systems could provide 
excellent performance at any location, including those near the poles or other permanently shaded 
regions, and offer the capability to provide on-demand power at any time, even at long distances from 
the Sun. Fission-based systems also offer the potential for outposts, crew, and science instruments 
to operate in a power-rich environment. NASA has been exploring technologies with the goal of 
reducing the cost and technical risk of employing FSP systems. A reference 40-kWe option has been 
devised that is cost competitive with alternatives while providing more power for less mass anywhere 
on the lunar surface. The reference FSP system is also readily extensible for use on Mars. On Mars, 
the system would be capable of operating through global dust storms and providing year-round 
power at any martian latitude. 

 One key technology associated with the FSP system is the pump that circulates liquid-metal 
coolant through the reactor system. An annular linear induction pump (ALIP) was designed to 
the reference mission requirements and tested at representative operating conditions. This Technical 
Publication (TP) details the performance testing of this prototypic FSP reference mission ALIP.

1.1  Fission Surface Power Technology Development

 Under the NASA Exploration Technology Development program, NASA and the Depart-
ment of Energy have begun long-lead technology development for potentially supporting future 
integrated FSP systems. The major effort in the FSP technology project has been focused on a ref-
erence mission and concept. The reference mission is to provide electrical power to habitats on the 
lunar surface. The requirements derived from this mission are 40 kWe delivered to the habitat, and 
a design life of 8 yr. Although many options exist, NASA’s current reference FSP system uses a fast 
spectrum, pumped liquid, sodium-potassium- (NaK-) cooled reactor coupled to a Stirling power 
conversion subsystem. The reference system uses technology with significant terrestrial heritage that 
can perform at any location on the surface of the Moon or Mars. Detailed development of the FSP 
concept and the reference mission are documented in various other reports.1–4
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 The objectives of the FSP technology project are as follows:5

• Develop FSP concepts that meet expected surface power requirements at reasonable cost with 
added benefits over other options.

• Establish a non-nuclear hardware-based technical foundation for FSP design concepts to reduce 
overall development risk.

• Reduce the cost uncertainties for FSP and establish greater credibility for flight system cost 
estimates.

• Generate the key non-nuclear products to allow Agency decision makers to consider FSP as 
a viable option for potential future flight development.

 One key technology associated with the FSP system is the liquid-metal pump. The pump must 
be compatible with the liquid NaK coolant and have adequate performance to enable a viable flight 
system. Idaho National Laboratory (INL) was tasked with the modeling, design, and fabrication of 
an ALIP suitable for the FSP reference mission.6 A prototypic ALIP was fabricated under the direc-
tion of INL and shipped to NASA Marshall Space Flight Center (MSFC) for testing at representa-
tive operating conditions. This pump was designed to meet the requirements of the FSP reference 
mission. In addition, it incorporates unique design features to increase pump performance over typi-
cal industrial pumps in anticipation of the higher performance and lower weight typically required 
for a flight system. Analysis of the measured performance, as compared to the design predictions, 
as well as implications for the next ALIP design iteration, can be found in the companion report 
published by INL.6 The ALIP test circuit (ATC) used to test the present pump will also be used to 
test future ALIPs for the FSP Technology Development program, including a pump designed for the 
Technology Demonstration Unit, which is a 10-kWe, end-to-end test of FSP technologies intended 
to raise the entire FSP system to technology readiness level 6.

1.2  Nonnuclear Testing at Marshall Space Flight Center

 The Early Flight Fission-Test Facility was established by MSFC to provide a capability for 
performing hardware-directed activities to support multiple in-space nuclear reactor concepts by 
using a nonnuclear test methodology.7,8 This includes fabrication and testing at both the module/
component level and near prototypic reactor components and configurations, allowing for realistic 
thermal-hydraulic evaluations of systems. In the present testing, the ATC was fabricated to provide 
the capability to measure the performance of induction pumps over a wide range of input conditions 
and environments. The system is described in detail in section 2, followed by measured performance 
results on the present ALIP.
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2.  ANNULAR LINEAR INDUCTION PUMP TEST CIRCUIT HARDWARE 
AND TEST SETUP

 The ATC apparatus, shown schematically in figure 1 and photographically in figure 2, was 
fabricated to allow for performance testing of liquid-metal induction pumps. The present test circuit 
consists of the ALIP, an induction heater, a throttling valve, an electromagnetic flowmeter, and a 
gaseous nitrogen- (GN2-) to-NaK heat exchanger. A large pipe size (3-in, schedule 10, stainless steel 
(SS)) was employed to minimize the viscous flow losses throughout the loop. In this section, the 
major hardware and instrumentation components of the system are described in detail.

Throttling
Valve

Accumulator

ALIP

NaK Temperature 
and Inlet Pressure (P-01)

Electromagnetic 
Flowmeter

RF Heater Coil

Heat Exchanger

Flow Direction

Flow Direction

Pump Pressure (DP-01)

Outlet Pressure (P-02)

Cover Gas Pressure (P-03)

Figure 1.  Schematic of the ALIP test circuit.
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ALIP

RF Heater Coil Heat Exchanger Throttling
Valve

Electromagnetic
Flowmeter

NaK Temperature Inlet Pressure (P-01) Outlet Pressure (P-02)

Flow Direction

Flow DirectionFlow Direction

Figure 2.  Photograph of the assembled ALIP test circuit.

2.1  Components in the System

2.1.1  Annular Linear Induction Pump 

 The primary test article is the ALIP shown in figure 3. The design and development of the 
pump was performed by INL and is discussed in a companion report.6 Three-phase power is applied 
to the pump to produce an axially-traveling magnetic wave. This magnetic wave induces currents in 
the liquid metal, which subsequently interact with the magnetic field to produce a Lorentz body force 
on the fluid, pushing it through the system. 

 The power applied to the pump is completely characterized by the voltage, current, and fre-
quency of the three-phase power. In the present experiment, the voltage and frequency were con-
trolled, while the electrical impedance of the pump dictated the current. Two different power sources 
were applied to the pump. The first was an Allen Bradley PowerFlex 400 variable frequency drive 
(VFD), which allowed for setting the frequency of the power delivered to the pump to an arbitrary 
value from zero to 60 Hz. The VFD employs pulse width modulation (using a 4-kHz carrier wave fre-
quency) to produce an approximately sinusoidal current at these arbitrary frequency levels. A sample 
of the raw output of the VFD is shown in panel (a) of figure 4 with a section of the output enlarged 
in panel (b) to show the detail on the pulse width modulation. A second method for applying power 
was directly from the electrical grid, which provided a very clean, purely sinusoidal—in both current 
and voltage—waveform at 60 Hz.

 While the raw current output of the VFD was a good approximation of a sinusoidal wave, it 
is difficult to combine it with the modulated voltage waveform to obtain an accurate power measure-
ment owing to the very fast voltage switching. To alleviate this issue, a sine wave filter was employed 
to filter the VFD voltage output into an approximately sinusoidal waveform that could be better 
combined with the current waveform within the data acquisition (DAQ) system to measure power. 
The effectiveness of filtering is demonstrated in figure 5. The raw VFD output at 36 Hz is shown in 
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ALIPFlow Expansion

Flow
ContractionFlow

Direction

ALIPFlow Expansion

Flow
ContractionFlow

Direction

Figure 3.  The ALIP installed in the test circuit.
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Figure 4.  Sample waveform showing (a) the raw voltage output of the VFD 
 at 36 Hz and (b) an enlarged section of the output showing 
 the detail on the pulse width modulation.
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VAB (36 Hz)
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VAB 
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Figure 5.  Sample voltage output:  (a) raw VFD waveform at 36 Hz and 
 (b) the sine wave filtered voltage waveforms at 36 and 60 Hz.

panel (a) and the filtered VFD output for both 36 and 60 Hz is shown in panel (b). The slight oscil-
lations on the filtered voltage waveforms only affect the measurements of voltage and power in the 
DAQ at low voltage levels (below 30–40 V ac).

 The filtered VFD output or power from the electrical grid was passed through a variac trans-
former to control the voltage. By adjusting the variac, the voltage and commensurate power to the 
pump could be controlled to an arbitrary level.

2.1.2  Throttling Valve Design

 An in-house custom design was chosen for the throttling valve owing to the unique system-
level requirements. These included operation in a hot NaK environment, very low pressure drop in the 
flow configuration where the valve was fully open, and a requirement to not deadhead the pump (i.e., 
valve should not fully close and seal). To produce the smallest pressure drop across the valve, a gate 
valve design was selected, making use of a welded bellows to provide actuation and hermetic sealing 
of the valve. The high-temperature NaK required SS or similar materials for all wetted surfaces. 
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 The final design of the gate valve is shown in figure 6. The gate was required to translate 
completely across the duct to decrease the pressure drop as much as possible. The gate itself  was 
constructed of Inconel®. This material was selected because it has a lower coefficient of thermal 
expansion than the SS grade 304 that comprised the rest of the valve body, and also to prevent  
galling between the valve body and the gate. 

Handwheel
Gearbox

Motor

Bellows

Gate Valve

(a) (b)

Figure 6.  Throttling valve used on the ATC:  (a) Rendering and (b) photograph.

 The bellows was sized to provide 3 in of travel corresponding to the height of the duct. The 
neutral point of the bellows was located at the approximate midpoint in the duct, resulting in the 
bellows in tension when fully open and compression when fully closed. A stress analysis of the valve 
was performed and is documented in appendix A.

 A vacuum-rated motor is connected through a worm-drive gearbox to the top plate of the 
bellows. The stepper motor allows for precise and repeatable positioning of the valve gate. A tube 
was installed at the top of the bellows to allow for evacuation of trapped gases and to facilitate  
posttest cleaning.  

 The effectiveness of the throttling valve is demonstrated in figure 7. The experimental test 
data presented in this figure show the pressure rise imparted by the pump, and the NaK volumetric 
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flow rate—at relatively constant pump power—as a function of valve position. The zero (0) position 
is equivalent to a fully open valve and the valve ‘fully closed’ limit switch is set at 7.744 cm (3.049 in). 
As the valve closes, the flow resistance in the system increases. This leads to a decrease in the flow rate 
and a commensurate increase in the pressure rise imparted to the fluid by the pump.   

2.1.3  Radio Frequency Heater

 The NaK was heated using the radio frequency (RF) inductive heater coil shown in figure 8. 
The coil was manufactured by Fluxtrol, Inc., Auburn Hills, MI, and was powered using a Tocco-
tron 400, 12.5-kW, inductive heater power supply. Two thermal images of the coil heating the flow 
channel are presented in figure 8 to demonstrate the effectiveness of heating. 

 Several issues were encountered during heating. First, the thermal insulation of the loop was 
incomplete, allowing significant amounts of heat to escape, which necessitated the addition of aux-
iliary heating elements (see sec. 2.1.4). Second, the coil could not be operated at full power because 
the vacuum level inside the chamber was only in the 1 to 10 mTorr range, which is very amenable 
to inductive breakdown (plasma formation). Once a plasma would form, the coil ends would short 
circuit, which rapidly changed impedance of the load and forced the inductive power supply to auto-
matically shut down. Consequently, full-power inductive heating could not be achieved in this test 
setup. Finally, the impedance mismatches in the transmission line between the power supply and the 
coil most likely caused significant power reflection in the system, reducing power to the coil to some-
thing well below the level set on the supply. 

2.1.4  Auxiliary Resistive Heater Elements

 Four graphite heaters were added to the ATC during testing to provide additional heat  
and allow for reaching the target maximum circuit temperature. The site of installation was imme-
diately downstream of the ALIP as it was the only location on the ATC with a straight run of pipe 
available to receive the heaters. The design involved clamping four tubes to the sides of the ATC pipe 
wall and sliding the heaters inside these tubes (see fig. 9). The final design had to:

• Generate enough thermal energy from the heaters to heat the NaK to 525 °C.

• Affix the heaters to the side of the ATC pipe wall without welding.

• Achieve adequate heat transfer from the heaters to the NaK. 

 Each heater is capable of delivering ≈2,800 W. Four heaters wired in series were capable 
of producing between 6,000 and 7,000 W and were limited only by the power supply in this case.  

 The main challenges were providing for adequate heat transfer and allowing for thermal 
expansion and contraction. The heater tube is clamped to the ATC pipe, which leads to point  
contacts and poor thermal conduction between the tube and the pipe. 
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Figure 7.  Throttling valve test data showing (a) the pressure across the pump 
 and (b) the NaK volumetric flow rate as a function of valve position.

 A combination of copper (Cu) screen and Cu tape was used to enhance the thermal conduc-
tivity between the heater tubes and the ATC pipe. Copper screen was packed into the small spaces 
between the heater tube and the ATC pipe and was also packed into the space between the heater 
tubes. The entire assembly then was wrapped in Cu foil. A photograph of the final assembly is pre-
sented in figure 10. Clamps were employed to keep the mesh compacted into the various spaces. 
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(a) (b)

Figure 8.  Photograph of the (a) RF inductive heater coil 
 and (b) two thermal images of the coil in operation.

Heaters (Typical)

NaK Flow Channel

Clamps

Figure 9.  Rendering of the add-on heater assembly.
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Figure 10.  Final add-on heater assembly before the application of multilayer insulation.

2.1.5  Heat Exchanger

 A gas-to-NaK counterflow concentric tube heat exchanger was used to provide cooling and 
temperature control for the loop (fig. 11). The heat exchanger was sized to provide 10 kW of cool-
ing to the system using GN2 as the heat exchange medium. The NaK side of the heat exchanger was 
designed as a continuation of the 3-in, schedule 10 pipe comprising the loop. The length and diam-
eter of the GN2 side of the heat exchanger were sized through heat transfer considerations. The heat 
exchanger employs a bellows section to accommodate differential expansion between the pipe and 
GN2 shell. The shell consists of a 4-in, schedule 10S pipe with a custom bellows section fabricated by 
Pathway Bellows, Inc., Oak Ridge, TN, and was 36 in long. The bellows section includes a flow liner 
to reduce flow-induced vibrations and to maintain a small radial flow gap to maintain high convec-
tion rates. The GN2 shell was sealed on the ends by welding annular disks between the ends of the 
shell and the outside of the NaK pipe. 

 A gas preheater was used to heat the GN2 entering the heat exchanger to alleviate thermal 
shock and to provide finer control of heat removal at high temperatures. Additionally, this pre-
heater/heat exchanger combination was used to heat the loop during heat-up transients and when 
additional heating was needed to supplement the induction heater.



12

GN2 Inlet

GN2 Exit

Figure 11.  Gas-to-NaK heat exchanger installed in ATC.

2.2  Major Instrumentation

2.2.1  Data Acquisition and Control Platform

 The DAQ and control system is based on National Instruments hardware and software. The 
system consists of a Windows XP-based PC for user interaction and data recording, a PXI-1042 
chassis for DAQ and control, and an SCXI-1001 chassis for signal conditioning.

 The PC runs an in-house-developed LabVIEW™ application that communicates via Trans-
mission Control Protocol/Internet Protocol with the real-time LabVIEW application running on the 
controller in the PXI-1042 chassis. The PC application receives data and status information for dis-
play and recording and transmits user-initiated commands to the controller in order to operate the 
experiment. The application provides a user interface for operating the RF heater, throttling valve, 
heat exchanger, and data recorder. It also provides visual feedback on the status of and data from the 
system.

 The PXI-1042 chassis includes a PXI-8110 Real-Time (RT) embedded controller, a PXI-6281 
DAQ module, a PXI-6704 analog output module, and a PXI-6528 digital input/output (I/O) module. 
The PXI-8110 has a 2.26-GHz quad-core processor running the LabVIEW RT operating system. 
The controller runs an in-house-developed LabVIEW RT application that acquires data through the 
PXI-6281 DAQ module, scales the data into engineering units, monitors the data for alarm condi-
tions, and transmits the data to the PC application for recording and display. The RT application 
also controls the operation of the experiment in direct response to commands from the PC appli-
cation and provides appropriate feedback status to the PC application. Any closed-loop control is 
handled by the RT application. The PXI-6281 DAQ module is used to scan all available channels 
from the SCXI-1001 chassis that handles all signal conditioning. 
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 The SCXI-1001 chassis includes SCXI-1102 analog input modules and an SCXI-1503 resis-
tance temperature detector (RTD) analog input module. The SCXI-1102 module is used to condition 
analog voltage signals from various instrumentation transducers, including thermocouples and pres-
sure transducers. The SCXI-1503 RTD module is used to condition readings from an RTD, which 
measures the temperature of a thermocouple cold junction located on the test rig inside the vacuum 
chamber.

2.2.2  Pressure Transducers

 There are four pressure transducers of interest on the NaK-filled part of the experiment (see 
figs. 1 and 2). All of these transducers are manufactured by Delta Metrics, Worthington, OH. The 
transducer P-01 measures the absolute pressure of the NaK upstream of the ALIP, while the trans-
ducer P- 02 performs the same measurement downstream of the ALIP. 

 The transducer DP- 01 (∆ p transducer) yields a measurement of the differential pressure rise 
across the pump and uses the same ports as P- 01 and P- 02. Finally, P- 03 is located on the accumula-
tor and measures the pressure of the argon cover gas used to pressurize the NaK.

 As can be seen in figure 1, the transducers P- 01, P- 02, and DP- 01 perform their measurements 
beyond flow transitions from the 5.08-cm (2-in) piping on the ALIP to the 7.62-cm (3-in) piping on 
the rest of the loop. Since there are pressure losses associated with the reduction and enlargement of 
the cross-sectional area of the pipe, the pressure rise across the pump will be greater than that mea-
sured by the pressure gauges on the loop. Consequently, the pressure rise data used for computing 
the pump performance are corrected to account for the transitions. The magnitudes of these effects 
can be found in the presentation of performance data (sec. 3) and in appendix B.

 Data comparing the measurement of the ∆p transducer to a ∆ p computed by taking the arith-
metic difference between P- 02 and P- 01 are presented in figure 12. In this figure, the flow is stagnant 
at the left side of the graph, and both the ∆ p transducer measurement and P- 02 minus P-01 are 
equal to zero. As the flow is started and the ∆ p increased by closing the throttling valve, a deviation 
is observed between the ∆ p transducer measurement and P- 02 minus P- 01. As the throttling valve 
is reopened, reducing the ∆ p across the pump, the offset between the ∆ p transducer and P- 02 minus 
P- 01 persists. As the flow is reduced to zero, the ∆ p transducer output is negative by roughly the same 
amount that it deviated from P- 02 minus P- 01 at the peak level, while the value of P- 02 minus P- 01 
returns to zero. Therefore, P- 02 minus P- 01 is considered to be the more accurate measurement of 
∆ p and will be used throughout the rest of this TP.

 The absolute pressure transducer data from P- 02 and P-0 1 are plotted in panel (a) of figure 13, 
along with the argon cover gas pressure measured by P- 03. In addition, the ∆p measurement is given 
in panel (b) of the same figure. While the pressure on all three gauges oscillates up and down as the 
valve is closed and opened, it is observed that at each valve setpoint, the value of ∆ p is relatively 
constant, as would be expected. Also note that all three pressure values are roughly the same at the  
‘no flow’ condition, which is also an expected result if  all three gauges were operating properly.
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 The random uncertainty on the ∆p data set is calculated to be 100–200 Pa (standard devia-
tion of the data acquired at a given valve setpoint). However, the accuracy of the DAQ system is 
not as small as this value. The transducers yield a 5-V output over a pressure range of 689.5 kPa  
(100 psia). They are read through a National Instruments SCXI-1102 signal conditioner into 
a PXI-6281 DAQ card. The error on each pressure measurement through the given instrumenta-
tion chain is ≈258 Pa. When combined, the error for the difference in measurements between P- 02 
and P- 01 yields a total ∆ p uncertainty of 365 Pa, which is taken as the uncertainty on all the 
∆ p measurements.

 Before leaving this topic, the ∆ p transducer exhibited significant drift, not just as the valve was 
exercised, but throughout the course of testing. This drift is likely due to a combination of several 
different causes. The transducer was observed to drift over time and was also seen to drift as the loop 
was heated. It is possible this drift was due not only to thermal effects to the transducer, but also to 
stresses induced in the transducer body as the two tubes connecting the transducer to the upstream 
and downstream ends of the ALIP moved apart under thermal expansion. The latter source could 
be observed when stressing the tubes by hand created a similar drift in the measurement. 

 Another potential problem could have been the presence of trapped gases inside the tubes, 
creating a compressible layer between the transducer diaphragms and the NaK. Even with the tubes 
clamped into place to minimize their movement, and after the attempt was made to pull all the gas 
from the transducer lines, drifts like those shown in figure 12 were still observed. Using thinner tub-
ing and doing a more thorough job strain relieving the tubes connecting the transducer to the loop 
might help alleviate the problems, but it is still unclear whether the deviation and hysteresis observed 
in the ∆ p transducer data would be eliminated using these techniques. 

2.2.3  Electromagnetic Flowmeter 

 An electromagnetic (EM) flowmeter (fig. 14) is used to measure the volumetric flow rate 
of NaK in the system. It consists of two neodymium-iron-boron magnets opposing each other on 
opposite sides of the pipe containing the flowing NaK. The magnetic flux return is provided using 
the magnetically permeable material Fluxtrol (Fluxtrol, Inc.). Copper blocks were designed into the 
flowmeter to hold the magnets apart and provide the ability to remove heat that might be imparted 
from the hot NaK flow channel. The Cu blocks are water cooled to thermally stabilize the magnets. 
A porous-ceramic blanket material is overlaid on the NaK flow channel to restrict heat transfer to 
the magnets. When the chamber is evacuated, this limits the heat transfer rate to thermal conduction 
along the tenuous paths presented by the ceramic material.  
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Figure 14.  Electromagnetic flowmeter.

 The principle of operation of an EM flowmeter derives from Faraday’s law and is succinctly 
stated as follows: A ‘back-emf’ is induced in an electrically conductive medium—a conductive liquid 
in the present case—moving transverse to an applied magnetic field.9 The volumetric flow rate (  &v ) is 
linearly related to the induced voltage (V ) and can be written as

 
   &v = m V + b , (1)

where the constant m is a function of the magnetic field strength and the geometry of the flow chan-
nel and b is an offset constant. The value of m is typically determined by calibration and the value 
of b is typically set equal to zero. The calibration process employed for the present test apparatus  
is detailed in appendix C. The coefficients m and b obtained through that process are 0.4063 ± 
0.0047 L/s / mV (6.440 ± 0.075 gpm/mV) and 0 ± 0.0070 L/s (0 ± 0.111 gpm), respectively. The voltage 
is measured across the flow channel and amplified using a Wilkerson field-programmable isolation 
amplifier to improve the signal-to-noise ratio before being fed into the DAQ system.

2.2.4  Annular Linear Induction Pump Power Measurements

 The ALIP power is measured using an Ohio Semitronics two-meter wattmeter (model P-144D). 
The unit monitors the real three-phase power delivered to any load (connected in either a delta  
or a wye configuration) by simultaneously monitoring the current in two of the three legs and mea-
suring the voltage in all three legs.10 In the present test setup, the wires to the ALIP are looped 
through the current transducers four times to increase the signal-to-noise ratio in the measurement. 
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 The measurement was calibrated using the method described in appendix D. This calibration 
method provided a data correction factor at low power that was dependent on the frequency of the  
three-phase power fed to the pump. It also allowed for a significant reduction in the reported error 
on the power measurement. The correction factors and uncertainties are also found in appendix D.

2.2.5  Temperature Measurements

 Temperature measurements were acquired using thermocouples mounted in two ways— 
clamped externally to the piping and inserted in thermal wells at the flow centerline (fig. 15). Both 
mounting techniques were used in order to better understand the advantages and limitations of each. 
A discussion of the differences in the resulting measurements is presented in section 4.3.

                       

Thermal Well

Clamped 
Thermocouple

Figure 15.  Clamp-on thermocouple and thermal well installed in ATC.

 A thermocouple was inserted into a small Cu block, which was then clamped to the outside 
of the pipe. The block had one convex face that was designed to fit the contour of the pipe and pro-
vide good thermal contact. Figure 16 shows a typical block and thermocouple assembly. Note that 
the tip of the probe is axially located near the center of the block, and is placed in the block as close 
to the pipe as possible. This mount is a significant improvement over thermocouple probes clamped 
directly to the pipe as it reduces both the installation inconsistencies and oxidation of the thermo-
couple, both of which can lead to large uncertainties in the temperature measurement. Figure 15 
demonstrates a typical installation in the experiment.
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Copper Block

Thermocouple

Figure 16.  Typical mounting block for a clamp-on thermocouple.

 The thermal wells (fig. 15) were installed to obtain more accurate steady-state and transient 
bulk NaK flow temperature measurements at the flow centerline. The thermal well protrusions were 
designed to be thin to minimize the contributions to pressure drop.

 Each thermal well was installed through a tube boss with a ½-in female vacuum compression 
ring (VCR®) weld gland (fig. 15). The thermal well assembly was fabricated (fig. 17) by boring a ¼-in 
hole in a ½-in VCR male blank. A section of ¼-in tube was inserted to accept the thermocouple 
probe and provide rigidity inside the VCR weld gland. A 1/8-in SS rod was bored to a wall thickness 
of roughly 0.5 mm (0.020 in) to accept the thermocouple probe, with 0.5-mm (0.020-in) thickness 
left at the tip to leave the thermal well hermetically sealed from the NaK. The 1/8-in rod was inserted 
into the end of the ¼-in tube. It was placed so that the rod protruded into the pipe flow with the ther-
mocouple probe tip located on the pipe centerline. The entire assembly was welded, as indicated in 
figure 17, and the thermocouple probe was brazed into the thermal well (Lucas Milhaupt Braze 716) 
to permit good thermal contact. An assembled thermal well is presented in figure 18.
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Figure 17.  Thermal well assembly:  (a) Schematic and (b) rendering.
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Figure 18.  Thermal well as fabricated and mated to a ½-in female VCR gland.
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3.  PERFORMANCE TEST DATA

 Presented in this section are performance measurements obtained during the course of test-
ing. These data consist of volumetric flow rate (  &v ), pressure rise across the pump (∆ p), input power 
(PIN), and efficiency (η). Efficiency is equal to the fluid power divided by the input electrical power 
and is given as

 

   

η =
&vΔp

P
IN

. (2)

 The data set spans a range of NaK temperatures from room temperature (25 °C) up to a  
peak temperature of 525 °C. For this particular pump, the nominal operating frequency (design 
point) is ≈36 Hz. Data are presented for the pump operating on VFD-supplied, three-phase power at 
33, 36, 39, and 60 Hz, and also on standard ac wall power at 60 Hz. The pump was operated over a 
range of voltage levels from 5 to 120 V ac at the nominal frequency, and over smaller voltage ranges 
at other frequencies.

 Typically, data were acquired by first bringing the pump and loop temperature to a steady-
state value. A constant pump voltage was then set using the variac. The throttling valve was exercised 
through its entire range to obtain pump performance curves over a range of   &v  and ∆ p values.  

 Before presenting the measured performance data, it is important to note that this pump 
encountered some issues during the fabrication process that could lead to a lower than expected effi-
ciency. A few of the major issues are summarized as follows: The Cu coil windings were thicker than 
expected, so fewer coil turns were possible, leading to a magnetic field strength at a given applied 
current level that was lower than the design value. Also, there is an uncertainty in the magnetic prop-
erties of the stators and torpedo. This could be due to low cobalt content of the alloy or improper 
annealing, either of which could result in reduced magnetic field strength in the channel for a given 
applied power. As will be shown in the data, the currents supplied to each of the three phases were 
not equal. This may be due to a short circuit between coils, unbalanced mutual inductance between 
the different coils, or end effects causing the inductance of each leg to be slightly different. Conse-
quently, while the efficiency of this pump is admittedly lower than was expected, these data should 
not necessarily be taken as representative of the best possible performance for an ALIP. These issues 
are detailed and addressed in a companion report.6

 To demonstrate the remarkably clean nature of the test data, each individual data point  
over roughly 215 min of testing is plotted in figure 19. These data were acquired at a sampling rate of 
1 Hz, a NaK temperature of 325 °C, and an ALIP frequency of 36 Hz. Each line of dots in panel (a) 
represents operation at a constant pump voltage. Concentrations of data points represent flow con-
ditions measured at steady-state flow conditions while the throttling valve was stationary (roughly 
40–60 s dwell time). The individual dots forming the rest of the lines represent data obtained while 
the valve was transitioning from one setpoint to the next. Each efficiency point was computed using 
the flow rate (∆ p), and input power as measured and recorded on the DAQ system.
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Figure 19.  All raw data from operation at a NaK temperature of 325 °C 
 and a pump frequency of 36 Hz. Data were acquired 
 at a sampling rate of 1 Hz, and presented as (a) ∆p and 
 (b) efficiency as a function of flow rate.

 The data presented in figure 19 were analyzed and are presented as pump performance curves 
in figure 20. The data were analyzed at steady-state flow conditions. Each curve is labeled with the 
ALIP operating voltage for that particular performance curve. The error bars on flow rate, ∆p, and 
input power were determined in the manner given in section 2.2.2 and appendices C and D. The error 
on calculated efficiency is given in the standard manner,11 assuming no cross correlation between 
the errors on the three measured parameters. The error bars for the data set are small compared 
to the magnitude of the measurement. Those on the calculated efficiency are smallest at the high-
est flow rates and voltages, and grow larger as the flow rate or voltage is reduced. At 5 V, the error 
bars on efficiency are larger than the calculated value, which is unsurprising given the low values of 
all three parameters that comprise equation (2). If  obtaining a much more accurate measure in this 
regime was required, the measurements on input power and ∆ p could be refined to obtain a lower 
uncertainty on the data.
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Figure 20.  Reduced data from operation at a NaK temperature of 325 °C 
 and a pump frequency of 36 Hz (fig. 19 data). Data presented 
 (with error bars) as (a) ∆ p and (b) efficiency as a function 
 of flow rate and constant pump voltage.

 The ∆ p data given in figures 19 and 20 represent P- 02 minus P- 01, located as shown in fig-
ure 1. As previously stated, this does not measure the total pressure rise because there is pressure loss 
associated with the contraction and expansion of the flow at the pump’s inlet and outlet, respectively. 
An analytical correction to account for these pressure losses was developed and is documented in 
appendix B. The effect of this correction on the ∆ p measurement is demonstrated on three repre-
sentative data sets in figure 21. The correction is largest, both in absolute and relative terms, for the 
highest flow rates, but these corrections do not significantly affect the overall data set. Even though 
the correction is small, it has been incorporated into the subsequent data presented in this section for 
the sake of completeness.
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Figure 21.  Select constant pump-voltage data from operation at a NaK 
 temperature of 325 °C and a pump frequency of 36 Hz, 
 showing the effect of the contraction and expansion corrections 
 on the (a) ∆ p measurement and (b) corresponding efficiency 
 as a function of flow rate.

 In figures 22–26, data are presented showing the performance of the pump at different NaK 
temperatures for constant applied voltages of 40, 60, 80, 100, and 120 V, respectively. The NaK tem-
peratures were 125, 225, 325, 425, and 525 °C. The trends in the data show that for a constant volt-
age, both the ∆ p and the efficiency as a function of flow rate shift lower with increasing temperature. 
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Figure 22.  Measured performance curves for pump frequency of 36 Hz 
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Figure 23.  Measured performance curves for pump frequency of 36 Hz 
 and voltage of 60 V showing (a) ∆ p and (b) efficiency 
 as a function of flow rate and NaK temperature.
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Figure 24.  Measured performance curves for pump frequency of 36 Hz 
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Figure 25.  Measured performance curves for pump frequency of 36 Hz 
 and voltage of 100 V showing (a) ∆ p and (b) efficiency 
 as a function of flow rate and NaK temperature.



28

100

80

60

40

20

0

8

6

4

2

0

14

12

10

8

6

4

2

0
0 20 40 60 80 100

0 20 40 60 80 100

0 1 2 3 4 5 6

0 1 2 3 4 5 6

∆p
 (k

Pa
)

Ef
fic

ien
cy

 (%
)

∆p (psi)

Flow Rate (L/s)

Flow Rate (L/s)

Flow Rate (gpm)

Flow Rate (gpm)

(a)

(b)

325 °C
425 °C
525 °C

Figure 26.  Measured performance curves for pump frequency of 36 Hz 
 and voltage of 120 V showing (a) ∆ p and (b) efficiency 
 as a function of flow rate and NaK temperature.

 While constant applied voltage lines are an approximation of constant real power supplied to 
the pump, they are not, strictly speaking, the same. Consequently, data are plotted in figures 27 and 
28 showing efficiency contours as a function of real power and flow rate at constant temperature. 
These data exhibit an efficiency island in the middle of the plot and show that the peak of this island 
becomes smaller as the temperature is increased.
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Figure 28.  Measured efficiency contour plots from operation at a pump 
 frequency of 36 Hz as a function of real power to the pump 
 and flow rate for NaK temperatures of (a) 425 °C and (b) 525 °C.

 The effects of changing the applied frequency while operating at a constant voltage (80 V) 
are explored in figure 29. In this figure, the data obtained at 33, 36, and 39 Hz are similar. The ∆ p 
levels deviate slightly at lower flow rates, but the efficiency curves as a function of flow rate are fairly 
consistent across the data set. (Recall the error bars on the measurement as shown fig. 20.)

 As expected, the data obtained while operating at 60 Hz exhibit significantly lower perfor-
mance than the other data sets. Of particular interest, however, is the comparison between the data 
obtained at 60 Hz with power supplied by the sine wave filtered VFD (open square symbols) and a 
pure sinusoidal voltage supplied straight from ac wall power. The data set shows that the approxi-
mated sinusoidal current supplied by the VFD compares favorably with the ac-supplied power, 
serving to validate the use of a pulse width modulated source as a method for supplying arbitrary 
frequency power. As an interesting side note, the data obtained using the VFD operating at 60 Hz 
was acquired on the first day of testing, while the data operating straight from ac wall power was 
obtained on the last day of testing. The favorable comparison between the two data sets provides 
strong evidence that the pump did not degrade over the course of testing.
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Figure 29.  Measured performance curves from operation at a NaK temperature 
 of 325 °C and a pump voltage of 80 V showing (a) ∆ p and (b) efficiency 
 as a function of flow rate for different displayed pump frequencies. 
 The ‘wall power’ curve represents operation directly connected 
 to the electrical grid.

 Finally, data were acquired at low temperature to measure the performance of the pump 
under conditions mirroring those encountered before reactor startup, when the fluid is cold and 
the available power is low. These data are presented in figures 30 and 31 for NaK temperatures of  
25 and 75 °C, respectively. In these data sets, the pump was operated at three voltages (10, 20, and 
40 V) and two frequencies (36 and 60 Hz). As observed in figure 29,the pump exhibited significantly 
lower performance at 60 Hz when compared with the 36 Hz. In both figures 30 and 31, the flow rate 
could be relatively high as the throttling valve was opened, even at low applied voltages. At low volt-
ages, the pump performance curves follow the same pattern as those obtained at higher temperatures 
and voltages, indicating no fundamental change in operation under these off-nominal conditions.  
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4.  ADDITIONAL TEST DATA

 Nonperformance test data obtained during the course of this test series include measure-
ments of the transient responses of parameters in the ATC, ALIP input power, NaK temperatures as 
compared to ALIP temperatures, thermal well measurements as compared to clamp-on temperature 
measurements, and the internal magnetic field in the ALIP flow channel.  

4.1  Transient Data

 An aspect of interest for the ALIP is the response of the fluid under transient conditions. This 
was tested by suddenly cutting the power to zero, waiting for a period of time for all the parameters 
to settle to their zero-flow values, and then ramping the power back to a nonzero value. Data show-
ing the pump input power, volumetric flow rate, and pressure change across the pump for one of 
these sequences is presented in figure 32.
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Figure 32.  Data showing (a) pump input power, (b) volumetric flow rate, and (c) pressure 
 change as a function of time during transients in pump operation.
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 When the power is reduced to zero, a negative pressure gradient is induced across the pump, 
immediately slowing the flow rate. After 10–15 s, the flow rate has essentially dropped to zero. When 
power is reapplied to the loop, the flow rate and pressure immediately respond. Most interestingly, 
when there is no external power applied to the pump, the fluid slowdown is somewhat gradual as the 
process is controlled only through the NaK’s own inertia and viscous forces in the loop. However, the 
flow rate tracks the input power level one-for-one when active electromagnetic pumping is applied to 
the loop.  

4.2  Annular Linear Induction Pump Electrical Measurements 

 The ALIP was connected in the manner illustrated in figure 33. Phase-to-phase voltage mea-
surements and phase current measurements were performed on all input phases as indicated. The 
input voltages presented in figure 34 are representative samples shown to demonstrate the fidelity of 
the measurement only. Panel (a) shows the VAB phase-to-phase voltage when the VFD was employed. 
Panel (b) shows all three voltages when 60 Hz wall power was applied to the ALIP. For clarity, only 
one of the phase-to-phase voltages at 36 and 60 Hz is shown in panel (a), but all three were measured 
and, other than being out of phase by 120 deg, they were virtually indistinguishable from each other. 
This is also the case when true sinusoidal 60 Hz power (wall power) is applied to the pump. At some 
frequencies, the voltage sine wave-filtered waveforms delivered by VFD deviate more from a true 
sinusoid than those for other frequencies (36 Hz compared to 60 Hz in fig. 34 (a)).
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Figure 33.  Illustration showing the naming convention for (a) the ALIP electrical 
 connections and (b) an electrical schematic of how the ALIP 
 was connected and where each differential voltage and current
 was measured.
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Figure 34.  Phase-to-phase voltage:  (a) Single phase-to-phase (VAB) 
 input voltage measurements acquired while the pump 
 was powered using the VFD through the sine wave filter 
 and (b) all three phase-to-phase input voltages acquired 
 when operating from the electrical grid wall power.

 Measurements of the current in each input leg are presented in figure 35, with the three phase 
currents obtained while operating at 36 Hz using the VFD shown in panel (a) and the same mea-
surements performed at 60 Hz sinusoidal power input shown in panel (b). The data indicate that the 
VFD is performing well in producing a low-noise approximation of a sinusoidal input current. More 
importantly, the currents in IA, IB, and IC are not equal. For a given voltage input, IB is always great-
est while IA is always the smallest with IC falling in between. A fairly universal result is that the peak 
value of IA is roughly 12.5%–13.5% smaller than the value of IB.
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Figure 35.  Input current measurements for each phase acquired (a) while 
 the pump was powered using the VFD through the sine wave 
 filter and (b) when operating from the electrical grid wall power.

4.3  Temperature Measurements

 The temperature of the fluid entering the ALIP compared with thermocouple measurements 
inside the ALIP are presented in figure 36. These data show the entire thermal time history of the 
test series at 325 °C. The heating phase from room temperature to 325 °C lasted until ≈13,000 s into 
the test, and the testing itself  lasted until ≈28,000 s. The NaK and ALIP temperatures appeared to 
be well-coupled, all varying in roughly the same manner. An enlarged view of the heating phase is 
presented in figure 37, showing all four internal ALIP thermocouple measurements compared with 
the NaK temperature.

 A comparison was also performed between the measurements obtained using the thermal 
wells and those mounted in a Cu block clamped to the pipe. In these data, the thermal wells always 
measured slightly higher temperatures than the clamp-on thermocouples, which one would expect 
based on heat transfer through the thermal boundary layer and the pipe. This difference varied from 
location to location and ranged from 3 to 10 °C. In addition, clamp-on thermocouples were 30–60 s 
slower in responding to thermal transients in NaK temperature variations. These observations lead 
to the conclusion that a thermal well is desirable in situations where accurate measurements of fluid 
temperatures are required (e.g., performing power balances).
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4.4  Internal Electromagnetic Field Mapping

 A custom-fabricated, two-axis Hall probe was used to map the time-varying magnetic field 
inside the ALIP annular flow channel. Details of this probe’s construction and calibration are given 
in appendix E. Figures 38–49 are plots of the radial and axial magnetic field components as the 
phase current varies in time. The magnetic field plots have been accurately scaled to the ALIP draw-
ing shown in panel (a) of the time slice images, providing full spatial and temporal representation of 
the field variation throughout the course of one cycle of the phase current. The phase current in one 
of the coils is given in panel (d) of the figures, and a dark vertical line is used to indicate which time 
slice of data is being displayed in the magnetic field graphs. A right-traveling sinusoidal magnetic 
field is observed in Br, with the local peaks found on both the Br and Bz data corresponding to loca-
tions where the field is concentrated by the stators. When installed in the ATC, the NaK flow through 
the pump is right to left (as opposed to the left-to-right direction of the traveling wave in the figures), 
indicating that wires for two of the phases were swapped when performing the field mapping exercise.
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Figure 38.  ALIP image (a) on the same scale as (b) and (c), (b) radial (Br) 
 and (c) axial (Bz) magnetic field measurements at time t = 0 ms, 
 displayed as a function of axial position in the channel. (d) Phase 
 current displayed with a dark vertical line showing the instant of time.
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Figure 39.  ALIP image (a) on the same scale as (b) and (c), (b) radial (Br) 
 and (c) axial (Bz) magnetic field measurements at time t = 3 ms, 
 displayed as a function of axial position in the channel. (d) Phase 
 current displayed with a dark vertical line showing the instant of time.
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Figure 40.  ALIP image (a) on the same scale as (b) and (c), (b) radial (Br) 
 and (c) axial (Bz) magnetic field measurements at time t = 6 ms, 
 displayed as a function of axial position in the channel. (d) Phase 
 current displayed with a dark vertical line showing the instant of time.
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Figure 41.  ALIP image (a) on the same scale as (b) and (c), (b) radial (Br) 
 and (c) axial (Bz) magnetic field measurements at time t = 9 ms, 
 displayed as a function of axial position in the channel. (d) Phase 
 current displayed with a dark vertical line showing the instant of time.
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Figure 42.  ALIP image (a) on the same scale as (b) and (c), (b) radial (Br) 
 and (c) axial (Bz) magnetic field measurements at time t = 12 ms, 
 displayed as a function of axial position in the channel. (d) Phase 
 current displayed with a dark vertical line showing the instant of time.
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Figure 43.  ALIP image (a) on the same scale as (b) and (c), (b) radial (Br) 
 and (c) axial (Bz) magnetic field measurements at time t = 15 ms, 
 displayed as a function of axial position in the channel. (d) Phase 
 current displayed with a dark vertical line showing the instant of time.
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Figure 44.  ALIP image (a) on the same scale as (b) and (c), (b) radial (Br) 
 and (c) axial (Bz) magnetic field measurements at time t = 18 ms, 
 displayed as a function of axial position in the channel. (d) Phase 
 current displayed with a dark vertical line showing the instant of time.
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Figure 45.  ALIP image (a) on the same scale as (b) and (c), (b) radial (Br) 
 and (c) axial (Bz) magnetic field measurements at time t = 21 ms, 
 displayed as a function of axial position in the channel. (d) Phase 
 current displayed with a dark vertical line showing the instant of time.
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Figure 46.  ALIP image (a) on the same scale as (b) and (c), (b) radial (Br) 
 and (c) axial (Bz) magnetic field measurements at time t = 24 ms, 
 displayed as a function of axial position in the channel. (d) Phase 
 current displayed with a dark vertical line showing the instant of time.
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Figure 47.  ALIP image (a) on the same scale as (b) and (c), (b) radial (Br) 
 and (c) axial (Bz) magnetic field measurements at time t = 27 ms, 
 displayed as a function of axial position in the channel. (d) Phase 
 current displayed with a dark vertical line showing the instant of time.
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Figure 48.  ALIP image (a) on the same scale as (b) and (c), (b) radial (Br) 
 and (c) axial (Bz) magnetic field measurements at time t = 30 ms, 
 displayed as a function of axial position in the channel. (d) Phase 
 current displayed with a dark vertical line showing the instant of time.
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Figure 49.  ALIP image (a) on the same scale as (b) and (c), (b) radial (Br) 
 and (c) axial (Bz) magnetic field measurements at time t = 33 ms, 
 displayed as a function of axial position in the channel. (d) Phase 
 current displayed with a dark vertical line showing the instant of time.
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5.  CONCLUSIONS

 Testing was performed to quantify the performance of an ALIP. A dedicated test apparatus, 
the ATC, was fabricated expressly for this purpose. The results of the testing lead to the following 
conclusions:

•  The test setup was well suited to quantifying the performance of the ALIP, allowing for accurate 
measurement of the various pump input parameters and resulting in narrow, well-defined uncer-
tainties on the data set.

• The VFD output was fed through a sine wave filter and a variac transformer and provided a means 
to accurately control both the voltage and frequency of the three-phase power applied to the ALIP.

• The flow impedance was successfully controlled using a throttling valve, which allowed for testing 
across a wide range of flow parameters.

• The pump was tested up to an input of 120 V over a range of NaK temperatures from 25 to 525 °C, 
and at three-phase power frequencies of 33, 36, 39, and 60 Hz. The pump was fed at 60 Hz using 
both the VFD and ac power drawn straight from the electrical grid.

• Performance spanned the range of flow rates from roughly 0.16 to 5.7 L/s (2.5 to 90 gpm), and ∆ p 
levels from <1 to 90 kPa (<0.145 psi to roughly 13 psi). The maximum efficiency measured during 
testing was slightly greater than 6%.

• Efficiency decreased as the temperature in the loop increased. Efficiency was maximized near the 
nominal design point of 36 Hz, and was significantly lower when operating at 60 Hz.

• The data at 60 Hz exhibited no significant variation in performance between power supplied by the 
VFD and power drawn directly from the electrical grid.

• Performance curves were only slightly impacted when corrections were applied to the data to 
account for additional pressure losses that occur as the flow passes through the contraction and 
expansion joints upstream and downstream, respectively, of the ALIP. 

• Measurements demonstrate that the flow parameters (flow rate and ∆ p) respond almost immedi-
ately to transients in the power applied to the pump. There is a modest coastdown period in flow 
rate when power to the pump is quickly brought to zero. When power is still actively supplied, 
there appears to be no time lag (on the 1-Hz timescale of the measurements) between variations in 
applied pump power and changes in the measured flow parameters.
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• The temperature inside the ALIP did not exceed the NaK temperature during the startup and 
steady-state phases of testing indicating that the internal ALIP components were thermally well 
coupled to the NaK.

• Thermal wells yielded a slightly more accurate measure of the freestream NaK temperatures  
relative to clamped-on thermocouples.
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1.0 Analysis Summary 
 
The purpose of this analysis is to determine the maturity of the design for the NPS Gate 
Valve.  The loading condition for this analysis was determined based on design 
requirements. 
 
The required analysis for the NPS Gate Valve consisted of a single load case requiring 
a load of 50 psi at a temperature of 1200°F.  
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2.0 Model Description 
 
The NPS Gate Valve FEA was modeled and analyzed using SolidWorks and 
SolidWorks Simulation, respectively.  The model was comprised of 6 components: 
 

• Stem Cap (011), Qty=1 
• Valve Body (012), Qty=1 
• Bottom Seal Plate (013), Qty = 1 
• Squish Tube (014), Qty=2 
• Bellows Cap (016), Qty=1 
• Valve Plate & Stem (017), Qty=1 

 
The following figure illustrates the various parts in the assembly. 

 

  

Bellows Cap (016) 
Valve Plate & Stem (017) 

Stem Cap (011) 

Valve Body (012) 
Squish Tube (014) 

Bottom Seal Plate (013) 

 
Figure 2.0-1 NPS Gate Valve Components 
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2.1 Materials 
 
The material summary for the parts depicted above is listed in the following table.   

 
Table 2.1-1 Component Material Summary 

 
Solids Part Number Material Specification 

Stem Cap 011 316 SS ASTM A 167 
Valve Body 012 316 SS ASTM A 167 
Bottom Seal Plate 013 316 SS ASTM A 167 
Squish Tube 014 316 SS ASTM A 167 
Bellows Cap 016 316L SS ASTM A 167 
Valve Plate and Stem 017 INCONEL 625 ASTM B 446 

 
Material properties for 316 SS, 316L SS, and INCONEL 625 were determined at a 
temperature of 1200°F.  Manufacturer data was used to determine these values. Both 
specifications can be seen in Appendix B. 
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2.2 Constraints 
 
The NPS Gate Valve model is constrained by fixing the bottom surface of 013 Bottom 
Seal Plate and by vertically restraining the top surface of 017 Valve Plate and Stem. 
The constraint on 013 Bottom Seal Plate will prevent the valve from translating and the 
vertical constraint on 017 Valve Plate and Stem prevents the gate from rising.  The FEA 
model of the NPS Gate Valve was cut two ways and symmetry constraints were chosen 
to ensure that the model behaved correctly. This was done so that the mesh size could 
be reduced and the run time for the analysis remain reasonable. The constraints are 
shown in the figure below. 

 

   

2

1

1

 
Figure 2.2-1 Constraints (1&2) 
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4

3

 
Figure 2.2-2 Constraints (3&4) – Symmetry 
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2.3 Mesh Details 
 
The global mesh size used was 0.30375 inches with a tolerance of 0.0152 inches.  The 
mesh consist of 2nd order polynomial, 10 node tetrahedral elements automatically 
generated by SolidWorks Simulation.  Two mesh controls were used for this analysis. 
 

Table 2.3-1 Mesh Summary 
 

Load 
Case 

Mesh 
Type 

Mesh 
Size Tolerance Number of 

Elements 
Number of 

Nodes 
1 Solid 0.304 0.0152 47627 76959 

 
Table 2.3-2 Mesh Controls Summary 

 
Mesh Control Mesh Type Mesh Size Applied To 

1 Solid 0.120 014 Squish Tube, 011, 012, 013, & 017 
Faces 

2 Solid 0.060 012 & 014 Interface 
 
The model was run with no loads and with only a temperature load to verify the 
constraints behaved as expected. Once these checks were completed and deemed 
satisfactory, a small load was applied and the reactions of the model and constraints 
were reviewed for behavior.  
 
The following figures illustrate the mesh and mesh controls. 
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Figure 2.3-1 General Mesh 1 
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Figure 2.3-2 Detailed Mesh 
 

 

 
 

Figure 2.3-3 Mesh Control 1 (.120 in) 
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Figure 2.3-4 Mesh Control 2 (.060 in) 
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2.4 Contact and Gap Description 
 
The contact and gap definitions for all load cases were identical.  The global 
contact/gap definitions were set to “no penetration”.  The following table gives the 
contact set information. 
 

Table 2.4-1 List of Detailed Contacts 
 

Contact 
Number Body or Bodies Number of 

Faces/Edges Type 
1 012 Valve Body & 013 Bottom Seal Plate 2 Bonded 
2 012 Valve Body & 014 Squish Tube 2 Bonded 
3 012 Valve Body & 017 Valve Plate & Stem 2 No Penetration 
4 012 Valve Body & 017 Valve Plate & Stem 2 No Penetration 
5 012 Valve Body & 011 Stem Cap 3 Bonded 

 
The following figure illustrates the locations of the contact sets. 
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Figure 2.4-1 Contact Set 1 (Bonded) 
 
 

 
 

Figure 2.4-2 Contact Set 2 (Bonded) 
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Figure 2.4-3 Contact Set 3 (No Penetration) 
 

 
 

Figure 2.4-4 Contact Set 4 (No Penetration) 
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2.5 Loads 
 
The required analysis for the NPS Gate Valve consisted of a single load case requiring 
a load of 50 psi at a temperature of 1200°F.  

 
 

 
2.5.1 Pressure Load 
  

  
 

Figure 2.5.1-1 Pressure Load (50 psi) 
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Figure 2.5.1-2 Pressure Load Cont. (50 psi) 
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3.0 Analysis Results 
 
The results of the Finite Element Analysis of the NPS Gate Valve can be seen below.  
 

Table 3.0-1 Results Summary 
 

Maximum Stress (psi) Minimum 
MOS 

Maximum 
Displacement (in) 

1820.0 7.59 0.150 
 
It should be noted that the displacement shown above is entirely due to the change in 
temperature from 77°F to 1200°F. This was confirmed by running the analysis with a 
temperature load only and pressure load only. Then to verify, hand calculations were 
done to validate the results. The resulting displacement of the bottom of 017 Valve Plate 
& Stem with only a temperature load was .150 in. The thermal expansion of both 011 
Bellows Cap and 017 Valve Plate & Stem were added together to for total displacement. 
Hand calculations for the displacement of the 017 Valve Plate & Stem are due to the 
change of temperature is shown below.  
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Table 3.0-2 Margin of Safety Summary 

 
PART Margin of Safety 

011 Stem Cap HIGH 
012 Valve Body 14.34 

013 Bottom Seal Plate HIGH 
014 Squish Tube 7.59 

017 Valve Plate & Stem HIGH 
 
From the above tables it can be seen that the analysis results show a design where all 
margins of safety remain positive for all members under load by both temperature and 
pressure. 
 
Detailed results for von Mises Stress, Displacement, and Margin of Safety are shown 
below.  
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3.1 Load Condition – 50 psi at 1200°F 
 
The application of the above loading conditions produced the following results: 
 

• Maximum Stress:  1820.0 psi 
• Minimum Margin of Safety:  7.59 
• Maximum Displacement:  0.150 in 

 
The graphical results for are illustrated in the figures below. 
 

 
 

Figure 3.1-1 von Mises Stress 
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Figure 3.1-2 von Mises Stress – Zoom 
 
 

 
 

Figure 3.1-3 von Mises Stress - Zoom 
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Figure 3.1-4 URES Displacement (1X) 
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Figure 3.1-5 URES Displacement (1X) 
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Figure 3.1-6 Factor of Safety (MOS = 7.36) 
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Figure 3.1-7 Factor of Safety (MOS = 7.59) 
 

 
 

Figure 3.1-8 Factor of Safety (MOS = 7.59)  
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Figure 3.1-9 Design Insight Plot – Critical Load Paths 
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4.0 Conclusion 
   
The analysis of the NPS Gate Valve shows that under a temperature load of 1200°F 
and a pressure load of 50 psi, the design is well within required margins. First, it should 
be noted that 1200°F is well within the maximum working temperatures for both 
materials and thus is not a concern. The biggest area of concern was the two Squish 
Tubes for the inlet and outlet of the valve. These are shown to be at a minimum margin 
of 7.59, thus should not be a concern. When welded into the assembly, the inlet and 
outlet will be reinforced even further.  
 
The remaining concern is the growth of 017 Valve Plate & Stem vertically. The 
horizontal growth (thickness) is not a concern due to the fact that the INCONEL 625 
material will increase in size with temperature at a rate less than that of the surrounding 
material of 316 Stainless Steel. When at room temperature versus operating 
temperature (1200°F), the position of the gate will vary due to the way that the gate is 
restrained. The difference in position of the gate at room temperature was calculated by 
hand (.147 in) and compared to the value calculated in the FEA (.147 in). Thus, the size 
of the opening in the valve will reduce as the working temperature increases due to the 
movement of the 017 Valve Plate & Stem. This will be offset somewhat by the increase 
in size of the hole in the 012 Valve Body. This increase in area of the elliptical hole in 
the 012 Valve Body was calculated to be approximately .21 in2 with a change of 
temperature from 77°F to 1200°F. Depending on the initial position of the 017 Valve 
Plate and Stem, the variation of the area of the valve body because of the change in 
temperature could be anywhere between approximately .17 in2 and .70 in2. This could 
lead to a net change in opening area of -.04 to +.49 in2. This may or may not be a 
concern in the operation of the valve, but should be noted as an effect of the operating 
temperature.  
 
 
The Stainless Steel Bellows was not included in the analysis. It was designed 
specifically for a 50 psi load at 1200°F temperature. 
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316 Stainless Steel 
http://www.sandmeyersteel.com/images/316-316L-317L-Spec-Sheet.pdf 

 
INCONEL 625 

http://www.specialmetals.com/documents/Inconel%20alloy%20625.pdf 
 
 
The above specification sheets are included as separate PDF files.  
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APPENDIX B—PRESSURE CORRECTIONS FROM GENERALIZED 
FLUID SYSTEM SIMULATION PROGRAM MODELING

 The pressure rise produced by the ALIP is given in figure 50 as ∆ ppump, which is equal to the 
difference in the pressure at the pump outlet (ppump_out) and inlet (ppump_in). In the experimental 
data, the inlet and outlet hydrostatic pressures were measured at locations indicated as pmeas_1 and 
pmeas_2, respectively. The contraction and expansion sections depicted in the figure reduce the overall 
value of ∆ pmeas as compared to ∆ ppump. Consequently, the calculated efficiency based on the mea-
surement of ∆ pmeas will be low relative to that based on ∆ ppump.

pmeas_1

Flow Loop

ALIP Pump

∆pmeas

ppump_in

∆ppump

∆pleg_2 ∆pleg_1

ppump_out pmeas_2

Figure 50.  Illustration of the ALIP showing the pipe contraction and expansion 
 and the relative locations of the pressure measurements.

  In this section, a correction is developed that can be added to ∆ pmeas to obtain an estimate 
of the true ALIP pressure rise, ∆ ppump, to allow for a more accurate calculation of the pump’s effi-
ciency. This correction factor is a function of both flow rate and fluid temperature.

 The contraction and expansion in the flow geometry between the measurement locations and 
the pump inlet and outlet are relatively simple features and are comprised of standard components. 
Consequently, it was assumed that a computational approach could be used to generate a satisfac-
tory correction factor. The Generalized Fluid System Simulation program (GFSSP) developed at 
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MSFC was used for this purpose.12 This program is an advanced computational fluid network solver 
and has been validated on many different fluid flow applications.

 GFSSP models a system as a flow network consisting of a series of nodes and branches. The 
fluid properties of NaK, specifically thermal conductivity, density, viscosity, ratio of specific heats 
(gamma), enthalpy, entropy, and the specific heat (Cp), all as a function of temperature, were taken 
from the published literature.13

B.1  Modeling Details

 The differences between measured (∆ pmeas) and actual (∆ ppump) pump pressure arise from 
losses at the expansion from the smaller diameter ALIP pipe to the larger diameter pipe comprising 
the ATC (∆ pleg_1) and the contraction from the larger diameter to the smaller ALIP pipe (∆ pleg_2) 
(fig. 50). The expansion/contraction sections are modeled in GFSSP using a finite number of step 
contractions.  

 The pipe comprising the outlet of the ALIP (leg 1) consists of a 7.62-cm- (3-in-) long section 
of pipe having an inner diameter (ID) of 5.48 cm (2.157 in). The weld joint between the ALIP pipe 
and the expansion section is modeled as a thick orifice, with the weld extending 0.16 cm (0.0625 
in) into the flow and having a streamwise length of 0.16 cm (0.0625 in). Beyond the weld there is a  
2.54-cm- (1-in-) long section of pipe with an ID of 5.48 cm (2.157 in). The transition from this size to 
the larger 8.28-cm (3.26-in) ID pipe is accomplished using a series of five square-edged expansions. 
The area ratio (smaller-to-larger cross-sectional area) of each step was kept between 0.92 and 0.95  
to ensure that the change in any single element was gradual. A review of reference data indicates that 
area ratios in this range have small loss coefficients.14 This leads to the conclusion that the modeling 
technique employed provides a suitable representation of the smooth (low-loss) expansion/contrac-
tion components used in the ATC. 

 Beyond the transition, there is another straight section of pipe having a length of 2.54 cm 
(1 in) and an ID of 8.28 cm (3.26 in). A weld joint, modeled in the same manner as the previous weld, 
joins the larger diameter part of the expansion joint to the piping comprising the rest of the ATC. 
Following the weld, the fluid flows for 7.62 cm (3 in) in an 8.28-cm (3.26-in) ID pipe before it reaches 
the location for the downstream pressure measurement (pmeas_2). This model of the expansion is 
then reversed to model the contraction at the ALIP inlet (leg 2). The GFSSP model schematics of 
these two sections are shown in figure 51.

 Each leg can be solved independently to determine the pressure difference from one end to the 
other as a function of flow rate and temperature. This is accomplished in GFSSP by first specifying 
the pressure loss between the two ends of the leg and then self-consistently calculating the corre-
sponding flow rate. This calculation is repeated over the range of pressures to create the characteris-
tic curve of pressure loss as a function of flow rate. The effects of fluid temperature on the pressure 
loss in each leg was ascertained by creating similar characteristic curves at various temperatures 
between 25 and 525 °C.  
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pmeas_1

Expansion Section

Contraction SectionWeld Joint Weld Joint

Weld Joint

(a)  Leg 1

(b)  Leg 2

Weld Joint

ppump_in

ppump_out pmeas_2

Figure 51.  GFSSP graphical representation of the (a) expansion section (leg 1) 
 and (b) contraction section (leg 2).

B.2  Modeling Results

 The computed pressure drops in legs 1 and 2 are plotted as a function of flow rate in  
fig ure 52, with each curve corresponding to a different NaK temperature. The resulting pressure 
losses for each temperature are fit to a second-order polynomial function with a y-intercept fixed 
at zero, since basic fluid flow relationships state that pressure loss is proportional to the mean  
low velocity (hence, volumetric flow rate) squared.

 The correction for computing ∆ ppump based on ∆ pmeas can be written as

 ∆ ppump = ∆ pmeas + ∆ pcorrection = ∆ pmeas + ∆ pleg_1 + ∆ pleg_2  , (3)

where ∆ pcorrection, ∆ pleg_1, and ∆ pleg_2 are a function of flow rate and NaK temperature. The total 
correction for each temperature is obtained by combining the losses in the two legs (fig. 53).

 ∆ pleg_1 and ∆ pleg_2 are quadratic functions of flow rate, and it follows that the result-
ing overall correction varies in the same manner. When examining the resulting curve fit for  
∆ pcorrection, it might be reasonable to expect that the fit would still retain physical verisimilitude 
when the first-order coefficient of the fit was neglected. This expectation was borne out in the results, 
with the resulting pressure drop correction for each temperature being well represented by a single, 
second-order coefficient.  
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Figure 52.  Computed pressure loss as a function of flow rate for (a) leg 1 
 and (b) leg 2 for seven different temperatures (25, 75, 125, 225,
 325, 425 and 525 °C).
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Figure 53.  Total pressure correction as a function of flow rate 
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 325, 425 and 525 °C).
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 Using only a single coefficient on the curve fit for each temperature significantly reduced the 
complexity of enfolding temperature dependence into an overall, functional relationship between 
the flow rate and pressure loss. This was accomplished by plotting the second-order coefficient for 
each temperature as a function of temperature and then performing a polynomial curve fit on the 
set. A third-order (in temperature) polynomial fit provided the best approximation of the functional 
relationship for the second-order (in flow rate) pressure correction coefficients. This results in:

  
   
Δpcorrection = a0T 3

+ b0T
2
+ c0T + d0( ) &v2 , (4)

where

a0 = –6.6013 × 10–11 Pa/(C3-L2/min2)
b0 =   6.3584 × 10–8 Pa/(C2-L2/min2)
c0 = –2.1314 × 10–5 Pa/(C-L2/min2)
d0 =   1.3682 × 10–2 Pa/(L2/min2).

Equation (4) predicts the pressure correction for any given value of temperature and flow rate from 
zero to 80 gpm and 25 to 525 °C.

B.3  Sensitivity Analysis

 An analysis was performed to obtain an estimate of the sensitivity of the computed results 
to variations in input values. While the expansion and contraction sections have been modeled as a 
series of discrete elements, pipe sections, thick orifices, and step expansion and contraction sections, 
the ensemble can also be modeled in GFSSP using a single restriction element. This element requires 
an effective cross-sectional area for the transition and a flow coefficient, CL. Previously computed 
results at each of the seven fluid temperatures were used to determine the CL values that would yield 
the same flow rate for a given pressure drop across each leg. By varying CL, the sensitivity of the 
pressure drop correction factor to variations in the flow coefficient can be ascertained.

 The nominal CL (value matching single restriction to the modeling performed using dis-
crete steps to represent the expansion and contraction) was varied, and the resulting pressure losses 
were computed for the same flow rates. The maximum variation in CL was assumed to be +10%.14 
Computing the resulting pressure losses for these maximum variations in CL bounds the resulting 
pressure loss and yields its sensitivity to flow coefficient variations. This analysis was performed for 
two fluid temperatures, 25 and 525 °C. Two flow rates were examined at each temperature. The results 
from this analysis are shown in figure 54, where the curve represents the nominal case and the ‘error 
bars’ show the sensitivity to flow coefficient. The results are summarized in table 1.

 Increasing the flow coefficient by 10% decreased the pressure loss in the transitions by roughly 
10% while decreasing the flow coefficient by 10% had a larger effect as it increased the pressure loss 
by 12% to 15%. In other words, the model is more sensitive to an underestimate of system losses than 
an overestimate. 



91

2,000

1,500

1,000

500

0

Flow Rate (L/min)

525 °C

25 °C

0 100 200 300 400

∆p
co

rre
ct

io
n (

Pa
)

Figure 54.  Range of variation in ∆p as a function of flow rate, with the error 
 bars showing the sensitivity to a +10% variation in the value of CL.

Table 1.  Summary of the range of variation in ∆ pcorrection 
for a +10% variation in the value of CL.

Fluid Temperature
(°C)

CL Variation
(%)

% Change in Δpcorrection
at 11.02 kg/s at 22.05 kg/s

25 +10 –9.61 –9.93
–10 14.58 12.33

525 +10 –9.71 –9.59
–10 14.82 15.35
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APPENDIX C—ELECTROMAGNETIC FLOWMETER CALIBRATION

 Two identical EM flowmeters were fabricated during the course of testing—one was inte-
grated into the ATC while the other was sent to Creative Engineers, Inc. (CEI), York, PA, for cali-
bration testing. The flowmeter at CEI was placed in a small vacuum vessel to reduce convective heat 
transfer between the flow channel and the permanent magnets. The entire unit was integrated into 
the test setup shown schematically in figure 55. 

≈1,890 L (500 gal)

≈1,890 L (500 gal)
(a)

(b)

Tank 1

Tank 1

Tank 2

Tank 2

Flow

Flow

Flow

Flow

Weight
Measurement

Flowmeter
(Inside Vacuum Vessel)

Flowmeter

Figure 55.  Test setup:  (a) Schematic of the flowmeter calibration 
 setup and (b) photograph of the test setup at CEI.
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 The relationship between volumetric flow rate and induced voltage is linear (as shown in  
eq. (1), sec. 2.2.3), as long as the fluid is relatively conductive. Consequently, the flowmeter can be 
calibrated on any conductive fluid as long as the volumetric flow rate can be independently quanti-
fied. In the present work, liquid sodium (Na) was used for the calibration. Testing was performed 
by first heating the Na in tank 1 to melt it and raise its temperature to a level that was comparable 
to what would be seen by the flowmeter in the ATC (calibration data obtained at roughly 150 and  
500 °C). A valve was opened, allowing the liquid Na to flow from tank 1 into tank 2. As the Na 
flowed, the induced voltage at the flowmeter and the mass of tank 2 (in kg) were recorded at a fre-
quency of 1 Hz. The error on the induced voltage measurement was essentially a DAQ system limit 
of ±0.02 mV, while the error on the mass measurement was ±1% or ±0.45 kg (1 lb), whichever was 
greater. Thermocouple measurements on tank 1 (also recorded at 1 Hz) were also stored and used to 
compute the density of the Na flowing in the system.

C.1  Data Reduction Method

 A sample calibration data set as a function of time is shown in figure 56. The volume (v) of 
Na in tank 2 is given in panel (a), while the signal from the flowmeter is found in panel (b). The Na 
volume has been computed from the accumulated mass measurement using the following relation for 
the density,15

 ρNa = 0.9493 – 0.1245 × 10–3 T  , (5)

where ρNa is in units of g/cm3 and T is in units of °F. For the 150 °C data set, the Na temperature 
varied from 133–160 °C, while the variation on the 500 °C data set was 470–548 °C. The density 
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Figure 56.  Sample flowmeter calibration data set showing (a) accumulated 
 Na volume and (b) flowmeter output voltage as a function of time.
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used to calculate volume was based on the mean temperature for the data set. The uncertainty is 
taken as the difference between the density at the mean temperature and the value calculated at the 
maximum or minimum temperature in the set. (Note: Because the temperature range is the full width 
of the variation, the uncertainty on the density calculated by this method is a 100% confidence inter-
val, and is multiplied by 0.66 to yield a 1-s confidence interval.) The volume of Na accumulated is 
the mass accumulated (m) divided by the density, and the error on this value is

 

  

σv
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ρNa
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2

σρ
2 ,  (6)

where the s values represent the systematic (as opposed to random) uncertainty on each data point, 
with the subscripts denoting which quantity (volume, mass, density) is associated with the uncer-
tainty.

 In figure 57, a subset of the data founding figure 56 is plotted as a function of time (t). In 
this region, the flowmeter signal can be accurately approximated as a linear function of time, which  
will prove critical to the analysis that follows. The accumulated volume is curve fit to a quadratic 
function of t:

 vfit = a + bt + ct2  , (7)

where a, b, and c are curve fit coefficients. 

 The derivative is

   &v  = b + 2 ct  , (8)

where   &v  is the volumetric flow rate, which is constructed to be a linear function of time. Perform-
ing the curve fit and then taking the derivative introduces less error than numerically calculating the 
derivative at each point using a finite-difference method. 

 The error band in equation (7) (given by the dashed lines in fig. 57) is found by performing  
a curve fit of the values of sv calculated from equation (6) for each data point, and is given as

 sv,fit = d + et +f t 2  , (9)

where d, e, and f are curve fit coefficients. Since the errors are systematic, the actual data are expected 
to follow a curve that is a quadratic function of t and lies somewhere within the error band. The error 
on the volumetric flow rate is the derivative of equation (9), given as

 
  
σ &v = e + 2 f t  . (10)
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Figure 57.  Data subset from figure 56 showing (a) accumulated Na volume 
 and (b) flowmeter output voltage in a regime where flow rate 
 is a linearly-varying function of time. Error bars are displayed 
 on these data to show the relative uncertainties in each measurement.

C.2  Flowmeter Calibration Curve

 Each data point in figure 58 was constructed using equation (8) to calculate the flow rate  
for each data point in a subset, such as the one depicted in figure 57, and graphing it as a function  
of the corresponding measured flowmeter output. Through a judicious selection of the calibration 
data subset analyzed, both   &v  and flowmeter output voltage are linear functions of time. Conse-
quently, they also necessarily satisfy the relationship in equation (1). A linear regression of the data 
in figure 58,

   &v = mV + b  , (11)

is displayed and results in m = 0.4063 L/s / mV (6.440 gpm/mV) and b = 0 L/s (0 gpm). The errors  
on the coefficients of equation (11) were found by recreating this regression with each data point 
biased by its maximum uncertainty (+s found using equation (10)). Biasing the data in this manner 
serves to shift the curve fit coefficients by the greatest possible value relative to the initial regression. 
The process was repeated with each data point biased by the negative of its maximum uncertainty  
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Figure 58.  Volumetric flow rates displayed as a function of flowmeter 
 output voltage (with error bars), and a curve fit to the data 
 having coefficients and uncertainties as given in the figure.

(–s). The greater value in the variation of m and b from these latter two regressions is taken as the 
uncertainty on the coefficients in equation (11). The errors on m and b, as presented in figure 58,  
are sm = 0.0047 L/s / mV (0.075 gpm/mV) and sb = 0.0070 L/s (0.111 gpm).
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APPENDIX D—ANNULAR LINEAR INDUCTION PUMP POWER MEASUREMENT, 
CALIBRATION/ERROR ANALYSIS

 The Ohio Semitronics two-meter wattmeter is designed to measure three-phase input power 
levels up to 80 kW with a maximum uncertainty in the measurement of ±1% of full scale. In ATC 
testing, the ALIP power level was typically below 4 kW and, in some cases, down to the level of 
watts. In addition, the accuracy of the instrument when used to measure the power being supplied by 
the VFD, which does not produce a purely sinusoidal current or voltage—even when employing the 
sine wave filter—was unknown. As a consequence, effort was invested to independently measure the 
input power into the pump for the purpose of validating the measurement accuracy and developing 
a calibration to significantly reduce uncertainty in measured power.

 Referring to figure 33 in section 4.2 and following the discussion in Walden’s two-meter  
wattmeter,10 the instantaneous real power delivered to the pump at any instant in time (regardless of 
whether the load is wired in a delta or wye configuration) is

 P = VACIA + VBC IB  . (12)

 Consequently, a calibration can be performed by simultaneously and independently mea-
suring these two differential voltages and two currents to calculate the power being delivered to 
the pump. The independent measurement was performed using a Tektronix TDS684C oscilloscope,  
Tektronix differential P5210 voltage probe, and Pearson model 101 current monitors. A measure 
of the currents, voltages, and calculated power levels are given in figure 59. The fact that the load 
is unbalanced—different current levels in all three legs—leads to a variation in the instantaneous 
power delivered to the pump as a function of time. 

 An average of the instantaneous power measurement (taken over several cycles of the wave-
forms and denoted as Pscope) was compared to the power measurement obtained using the wattmeter 
and data acquisition system (PDAQ). Samples of these measurements obtained at many different 
ALIP operating voltages for two different frequencies are presented in figure 60. The ratio Pscope/
PDAQ deviates from unity as the power level is reduced and asymptotes to unity at higher power lev-
els. The error bars found on the data for Pscope were obtained by taking the full width of the instan-
taneous power data scatter (shown representatively on the power data in fig. 59) and multiplying it 
by 0.66 to obtain the 1-s variation on the power measurement. It is important to note that this is not 
the same as taking the width of the oscillation in power since that variation is a real aspect of the 
waveform and not an uncertainty or error.

 The calibration was produced by curve fitting the following function to the data for each  
frequency:

 
  
y = y0 + Ae

− ln x/x0( )/σ⎡
⎣

⎤
⎦
2

,  (13)
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Figure 59.  Sample (a) phase currents, (b) phase-to-phase voltages, 
 and (c) calculated power delivered to the pump.

where the fit coefficients are y0, A, x0, and s. The error band on the fit is determined by fitting the 
same function to the data plus and minus the error on the value of Pscope /PDAQ. Examples of these 
curve fits are shown in figure 60. Curve fit functions for each frequency were derived in this manner 
and are used to correct the DAQ system data and yield measurement uncertainties on the power 
measurements data up to the point where the fit function was unity, Pscope /PDAQ = 1. At power 
levels above that point, the DAQ measurement was directly used and the error was taken as the 
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Figure 60.  Power measurements and error bands obtained at many 
 different ALIP operating voltages for 36 and 60 Hz.

numerical value of the error band at this crossover between the fit function and the location where 
Pscope /PDAQ. The fit function does not necessarily asymptote to unity, but the ratio between Pscope 
and PDAQ does. The calibration is effectively a ‘patch’ of these two calibration/correction solutions 
to obtain a function that is applicable throughout the measurement range. The coefficients on the 
calibration corrections and the associated error bands are given in table 2.

Table 2.  Coefficients on the power measurement calibration 
 corrections and associated error bands.

y0 A x0 s
Applicability

(W)
33 Hz –12.365 13.4429 246.591 12.706 <630
36 Hz –12.3497 13.4237 323.796 13.7807 <900
39 Hz –12.4494 13.5356 293.874 13.1368 <830
60 Hz –0.04827 1.10308 550.518 1.42829 <755
60 Hz (wall power) 1.00483 0.050056 39.0713 0.848073 <200

Positive Error Band
33 Hz –12.3397 13.5695 240.356 12.0001
36 Hz –12.2602 13.4732 269.941 12.1648
39 Hz –12.2749 13.5371 263.776 13.4569
60 Hz –0.05044 1.1713 544.242 1.4316
60 Hz (wall power) 1.05266 0.088366 21.3474 1.10833

Negative Error Band
33 Hz –12.5078 13.434 254.9 13.6268
36 Hz –12.4466 13.3901 449.23 16.2922
39 Hz –12.5508 13.4626 324.138 12.7979
60 Hz –0.04625 1.03516 557.64 1.4244
60 Hz (wall power) 0.735827 0.241423 116.445 4.87674
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APPENDIX E—HALL PROBE DESIGN AND IMPLEMENTATION

 The two-axis Hall probe used to measure the time-varying internal magnetic field in the annu-
lar flow channel of the ALIP is shown in figure 61. The probe tip is comprised of two Allegro A1301 
ratiometric linear Hall-effect sensor, surface mount, integrated circuits. One sensor is oriented to pro-
vide a measure of the radial magnetic field component and the other is mounted to measure the axial 
component. The magnetic field sensitivity specification for this sensor model is nominally 2.5 mV/G 
and has a frequency response (≈30 kHz) sufficient to capture the time-varying fields in the ALIP.

Probe Head

Axial Direction

Signal Outputs (BNC)
Power Supply (5 V dc)

Mounting
Block

Ra
dia

l D
ire

cti
on

Figure 61.  Hardware comprising the two-axis Hall probe.

 Calibration of the probe tips was performed by measuring the field emitted from a SmCo 
rare-Earth magnet with the Hall sensors and then repeating those measurements using a Lakeshore 
model 421 gaussmeter. The calibration curves for the axial and radial probe heads are developed by 
comparing the two measurements, and are presented in figure 62.

 The probe was mounted on a precision translation stage and inserted into the annular chan-
nel of the ALIP. Current was applied to the ALIP, and the axial and radial magnetic field measure-
ments were captured on an oscilloscope (triggered to the rising current level in one of the pump legs 
to ensure that time was aligned in every data set). After capturing data at one position, the probe 
was translated axially and the process was repeated. This yielded a measure of the magnetic field at 
every location over several cycles of the current. Querying these data for the magnetic field values at 
a particular instant in time allows for the construction of spatial magnetic field maps. Repeating this 
process for several different times allows for the reconstruction of the spatial and temporal evolution 
of the magnetic field.
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